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Abstract: In the proposed study, an asymmetrical two-degree-of-freedom one-
legged hopping robot - a Springy-Legged Offset-Mass (SLOM) robot - is inves-
tigated. An under-actuated model, uses a simple linear actuator to input energy
within the flight duration. Further, a 3-dimensional Poincaré return map is used
to construct a reduced order implicit model representing the non-linear dynamics
of the robot. Using Taylor series approximation technique, we formulated the
explicit non-linear approximate model of the proposed robot. The periodic motion
obtained for the system with a fixed energy injection in each cycle is unstable.
We used a different discrete-time sliding mode based state feedback stabilization
strategy to accomplish sustained hopping behaviour.

Keywords: hopping robot, Poincaré map, Taylor series approximation, sliding
mode control

1. INTRODUCTION

An extensive research related to one-legged hop-
ping robots has been going on for over three
decades (Sayyad et al., 2007b). Almost in all
these single-legged hopping robot configurations,
the body mass is symmetrically distributed such
that the geometrical axis of a telescopic leg is
along the center of gravity (CG). Asymmetric 2D
configurations have been considered by Shanmu-
ganathan (Shanmuganathan, 2002) and Kuswadi
et al. (Kuswadi et al., 2003). While, Wei et. al.
(Wei et al., 2000) have considered 3D asymmet-
ric configuration. Accounting for the asymmetry
in single-legged hopping robot is a new contri-
bution along with these studies. Silent features
differing the previous studies and proposed model
is highlighted in our previous study (Sayyad et
al., 2007a). We refer to these configurations as
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“SLOM” hoppers, wherein the line of action of
the spring or actuator force is offset from the CG,
which appears to give rise to a restoring rotational
moment.

There is loss of energy in hopping robots both
due to impacts and frictional affects. A periodic
hopping motion is possible only if the lost energy
is compensated periodically. In our model, energy
is compensated in each hop by compressing the
leg spring in the flight phase. There are several ad-
vantages of this approach (Sayyad et al., 2007a).
However, the capability of this input in stabilizing
the SLOM, needs to be examined. The main focus
of this work is how to stabilize the SLOM with this
inputs using feedback.

Regarding the sliding mode based control theory,
it is based on the concept of varying the structure
of the controller based on the state variation of
the system in order to obtain a desired response
(Young et al., 1999). Typically, sliding mode con-



trol is based on state feedback. Such closed-loop
control design problem involves two steps: se-
lecting the switching manifold and reaching the
switching surface within finite time. A control ef-
fort is used to switch between different structures
and the system state is forced to move along a
chosen manifold, called the switching manifold.

The main reason of proposed study is that the
evolved dynamics of the hopping robot by choos-
ing appropriate Poincaré section is discrete time
system. Here the ‘time’ refers to the hop. Recently,
many studies are tackling the Discrete-time Slid-
ing Mode Control (DSMC) system design prob-
lems (Furuta, 1990)-(Bandyopadhyay and Janard-
hanan, 2006). A typical characteristics of DSMC
systems is that the control input is applicable only
at certain sampling instants and the control effort
is constant over the entire sampling period. How-
ever, the system states are no longer constrained
to lie upon the confined sliding surface. As a
result, DSMC systems can undergo only quasi-
sliding mode, i.e. the system states are allowed to
remain in the vicinity of the sliding surface, called
the boundary Layer.

The present study uses the Gao’s reaching law
(Gao et al., 1995) and the saturation type reaching
law (Misawa, 1997). The proposed DSMC designs
use full state feedback and is applied to nonlinear
hopping robotic system that guarantees discrete
sliding mode. Moreover, to the author’s knowl-
edge, this is the first attempt to apply DSMC for
single-legged hopping robot.

The remainder part of the paper is organized as
follows: Section 2, describes the proposed SLOM
hopper and its dynamic model. In Section 3,
we determine periodic motion by constructing
a 3-dimensional Poincaré map and seeking its
fixed points. The Taylor series approximation ap-
proach is used to construct the discrete-time lin-
ear and non-linear approximate models. Section
4 is focused on the design of DSMC for the pro-
posed hopping model using different state feed-
back based control algorithms. Section 5 discusses
the results obtained in the current study.

2. THE PROPOSED SLOM HOPPER

In general, the hopping robots are variable struc-
ture systems where continuous motion is followed
by impacts which are discrete events . The posture
of proposed hopper during the stance phase is
shown in the Figure 1. It may be noted that the
leg spring is offset by a distance d from the CG
of the body located at A. The spring force also
does not act along a line passing through the CG
of the system (located at C). The leg length (l) is

defined to be the distance DQ. The leg motion in
downward direction is restricted by a mechanical
stop.

Fig. 1. A proposed SLOM hopping robot

2.1 Euler-Lagrangian (EL) equations of motion:

A hopping robot moves with alternating flight
and stance phases. In the EL formulation, during
such phase change, the dynamics of the robot does
not vary, but only the constraints imposed on the
robot changes. We choose q = [ xb yb l θ ]T as the
set of generalized coordinates. Here xb and yb are
the coordinates of CG of body. The standard form
of a robot model (for no external forces) is,

D(q)q̈ + C(q, q̇)q̇ + G(q) =−JT (q)λr

J(q)q̇ = 0 (1)

Where, D ∈ Rn×n, C ∈ Rn×n, and G ∈ Rn

are called the inertia matrix, the “coriolis and
centrifugal forces” matrix and gravitational force
vector respectively, and given as,

D =




M 0 −ml cos θ mll1
0 M −ml sin θ −mll2

−ml cos θ −ml sin θ ml −dml

mll1 −mll2 −dml I


,

C =




0 0 ml sin θθ̇ ml l̇ sin θ + mll2θ̇

0 0 −ml cos θθ̇ −ml l̇ cos θ + mll1θ̇

0 0 0 ml(l − h)θ̇
0 0 ml(l − h)θ̇ ml(l − h)l̇


,

G =
[
0 Mg −mlgsinθ + Ks(l − L0) −mll2

]T .

Note that, M = mb+ml, I = Ib+Il+ml

(
(l−h)2+

d2
)
, l1 = (l − h)sinθ + dcosθ, l2 = (l − h)cosθ −

dsinθ and L0, is the length l when the spring force
is zero. λr is the generalized constraint force. J is
Jacobian matrix determined based on constraints.
The subscripts b and l stands for parameters re-
lated to body and leg of hopper respectively.



2.2 Equations of impact:

Due to impact there is sudden discontinuous
change in the generalized velocities, while the
generalized coordinates and input changes con-
tinuously. The change of the derivative of the
generalized co-ordinates (q̇) can be determined
by integrating equation (1) with respect to time
across the impulse.

D(q)(q̇+ − q̇−) =−JT (q)λI

J(q)q̇+ = 0

where, q̇+ and q̇− are respectively the post and
prior generalized velocities across the impulse.
Refer ((Sayyad et al., 2007a)) for the constraints
and Jacobian during different phases and events.

3. POINCARÉ MAP AND ITS TAYLOR
SERIES APPROXIMATION

Our first objective is to obtain a periodic motion
with the help of an energy compensation mech-
anism, adding fixed amount of energy in each
flight phase. We have found periodic motion by
seeking fixed points of Poincaré return maps. The
Poincaré section used in our analysis corresponds
to the instant just before take-off, when the leg
reaches its fully extended state. It is defined as
l(t) = ltakeoff and l̇(t) > 0.

The Poincaré section is represented by three vari-
ables as, x =

[
θ l̇ θ̇

]T
, which is one less than

the number of state variables for stance phase,
(l, θ, l̇, θ̇). The entire hopping cycle is divided into
sub-phases ((Sayyad et al., 2007a)). If the state at
kth take off is identical to the state at (k + 1)th

take off, then the cycle is repetitive. In our system,
the Poincaré map is defined as a vector function
P : R3 ×R1 → R3 mapping the kth take off state
to the (k + 1)th take off state as,

xk+1 = P(xk, uk) (2)

for a fixed spring compression during flight phase
(referred as u, system input). Here xk is the state
x at kth hop. To determine the periodic motion,
we search for the fixed point of the function P.
The fixed point is a pair (x, u) which satisfy
following equation

x−P(x, u) = 0

3.1 Taylor series approximation:

The hopper model using the Poincaré map in
equation (2) is discrete time (hop) model as,

xk+1 = f(xk, uk) (3)

where, x = [ x1 x2 x3]T = [ θ l̇ θ̇]T , f is the
function P defined in equation (2) and since we
are dealing with single input, u is the scalar quan-
tity. More explicitly, we can write f(xk, uk) =
f(x1k, x2k, x3k, uk). Let’s define new variables
that simply measure how far we are from the fixed
point (x, u) of given non-linear function, as below,

4x = x− x

4u = u− u (4)

Using the Taylor series approximation, we have,

f(x, u) = f(x1, x2, x3, u)

=
n∑

m=0

1
m!

(
a + b + c + d

)m

f(x, u)

where, a = 4x1
∂

∂x1
, b = 4x2

∂
∂x2

, c = 4x3
∂

∂x3
,

d = 4u ∂
∂u and n is the order of approximation.

The term (. . .)m is the order-variant partial deriv-
ative operator on f . We chosen n = 3 (cubic
approximation). Further simplification gives,

f(x, u) = f(x, u) + A4x + B4u

+
1
2
D1f1(4x,4u)

+
1
6
D2f2(4x,4u) (5)

where, in our case, A ∈ R3×3, B ∈ R3×1,
D1 ∈ R3×10 and f1 ∈ R10×1, D2 ∈ R3×20 and
f2 ∈ R20×1. It is to be noted that, A, B, D1 and
D2 are determined around x = x and u = u as,

A =
[

∂f(x, u)
∂x1

∂f(x, u)
∂x2

∂f(x, u)
∂x3

]
, B =

∂f(x, u)
∂u

D1
T =




∂2f(x, u)
∂x1

2

∂2f(x, u)
∂x2

2

∂2f(x, u)
∂x3

2

∂2f(x, u)
∂u2

∂2f(x, u)
∂x1∂x2

∂2f(x, u)
∂x1∂x3

∂2f(x, u)
∂x1∂u

∂2f(x, u)
∂x2∂x3

∂2f(x, u)
∂x2∂u

∂2f(x, u)
∂x3∂u




, f1 =




4x1
2

4x2
2

4x3
2

4u2

24x14x2

24x14x3

24x14u
24x24x3

24x24u
24x34u






D2
T =




∂3f(x, u)
∂x1

3

∂3f(x, u)
∂x2

3

∂3f(x, u)
∂x3

3

∂3f(x, u)
∂u3

∂3f(x, u)
∂x1

2∂x2
∂3f(x, u)
∂x1

2∂x3
∂3f(x, u)
∂x1

2∂u
∂3f(x, u)
∂x1∂x2

2

∂3f(x, u)
∂x2

2∂x3
∂3f(x, u)
∂x2

2∂u
∂3f(x, u)
∂x1∂x3

2

∂3f(x, u)
∂x2∂x3

2

∂3f(x, u)
∂x3

2∂u
∂3f(x, u)
∂x1∂u2

∂3f(x, u)
∂x2∂u2

∂3f(x, u)
∂x3∂u2

∂3f(x, u)
∂x1∂x2∂x3
∂3f(x, u)
∂x1∂x2∂u
∂3f(x, u)
∂x1∂x3∂u
∂3f(x, u)
∂x2∂x3∂u




, f2 =




4x1
3

4x2
3

4x3
3

4u3

34x1
24x2

34x1
24x3

34x1
24u

34x14x2
2

34x2
24x3

34x2
24u

34x14x3
2

34x24x3
2

34x3
24u

34x14u2

34x24u2

34x34u2

64x14x24x3

64x14x24u
64x14x34u
64x24x34u




With the help of equation (3)-(5) and using the
relation x = f(x, u), we can write the incremental
discrete time nonlinear approximate model as,

4xk+1 = A4xk + B4uk +
1
2
D1f1(4xk,4uk)

+
1
6
D2f2(4xk,4uk) (6)

Also, we have the linear approximate model as,

4xk+1 = A4xk + B4uk (7)

3.2 Numerical results:

The central difference approximation is used to
evaluate the corresponding partial derivatives, e.g.

∂f(x, u)
∂x2

∣∣∣∣
x=x,u=u

=
fF − fA

2× dx2

for state component x2. fF and fA means f cal-
culated at fore and aft of fixed point respectively
as,

fF = f(x1, x2 + dx2, x3, u)
fA = f(x1, x2 − dx2, x3, u)

The fixed point obtained (Sayyad et al., 2007a) is,

x̄ =




θ̄
¯̇
l
¯̇
θ


 =




1.3992 rad
2.9193 m/s
0.1454 rad/s




and ū = 0.05 m. We have chosen the following
small perturbations from the fixed point:

dx1 = 1.2× 10−4 dx2 = 2.0× 10−4

dx3 = 10× 10−4 du = 0.2× 10−4

We get following matrices,

A =




1.7114 −0.03251 0.90066
0.91097 0.7947 0.24249
6.2283 −0.06616 3.0435




B =




0.37427
11.673
3.0052




We also calculated D1 and D2. In order to com-
pare linear and non-linear appropriate model with
the model originated from Poincaré return map
(referred as ‘actual model ’), we numerically simu-
lated it for various cases. We enumerate some of
them as follows:

• Figure 2 shows the x2(k + 1) vs x1(k), the
next hop-state l̇ evaluated when only state θ
is varied, keeping all other states and input
u at their fixed point values.

• Figure 3 shows the error in three state vari-
ables when those next hop-state were eval-
uated when all states and input is varied
randomly between appropriate range.
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Fig. 2. Comparing actual & approximated models
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4. DISCRETE-TIME STATE FEEDBACK
SLIDING MODE CONTROL

Our next objective is to stabilize the hopper. Note
that, the eigenvalues of state matrix A are,

λ1 = 4.8273, λ2 = −0.0786, λ3 = 0.8009

This ensures that the open-loop system is unsta-
ble. But, (A,B) pair satisfies complete state con-
trollability condition. In this study we designed
simple state feedback based control system to sta-
bilise hopper. We intend to design the controller
for approximated incremental model and then ex-
tend it to actual hopper model. The schematic
diagram representing this intention is shown in
Figure 4. For that, we have to use equation (4).
Model represented by equation (6) is considered
as linear uncertain system as,

4xk+1 = A4xk + B4uk + +d̂(xk, uk) (8)

where, d̂(xk, uk) = 1
2D1f1+ 1

6D2f2, can be consid-
ered as measurable disturbance, but we found it
as unmatched type disturbance (Gao et al., 1995).

Fig. 4. Schematic diag. of feedback control system

DSMC Approach 1 (Gao et al., 1995):
This approach use the linear model (7). The slid-
ing manifold s is defined as

{
sk = G4xk = 0

}
.

Here we used the Gao’s reaching law and equiva-
lent control law as,
sk+1 − sk = −ετsgn(sk)− qτsk

4uk = −(GB)−1
[
GA4xk − G4xk + qτsk +

ετsgn(sk)
]

where, ε > 0, q > 0 and 1− qτ > 0

DSMC Approach 2 (Misawa, 1997):
This approach use the nonlinear model (8). Note
that, the disturbance is bounded i.e. dL ≤ d̂ ≤ dU .
From Figure 3, we can calculate max(|d̂|). So, we
have, |Gd̂| ≤ γ. The approach use saturation type
reaching law and control law as,
sk+1 − sk = −Ksat( sk

φ )
4uk = −(GB)−1

[
GA4xk −G4xk + Ksat( sk

φ )
]

where, in generality K = γ + 2∆tε and φ = γ +
∆tε. ∆t and ε are positive scalars, can be re-
garded as design parameters. The sliding mani-
fold s is defined as the boundary layer so that,
Ψ =

{4xk‖sk = |G4xk| ≤ φ
}

In both above approaches, the switching vector
G is determined using the eigenvalue assignment
technique considering linear dynamics to be fol-
lowed during sliding mode.

Classical Approach:
This approach use the linear model (7) and4uk =
−Kp4xk. Kp is determined such that the eigen-
values of (A−BKp) is inside unit circle.

Simulation result:
For simulation purpose we used following con-
troller design parameters:
G = [0.07382 − 0.01490.3816] for reduced order
model eigenvalues (0.8, 0.6). ε = 0.0001, τ = 1
and q = 0.9. While, for γ = 0.5483, we selected
∆t = 1, ε = 0.0001, K = 0.5603 and φ = 0.5593.
Selecting eigenvalues as (0.8, 0.1, 0.6), we get
Kp = [2.4821− 0.03801.1861]. Figure 5 shows the
typical simulated response of actual hopper.
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Fig. 5. Response of actual hopping model, when
simulated for initial deviation from fixed
point as: (-0.04 rad, -0.5 m/s, 0.04 rad/sec)

5. CONCLUSION

In this paper, we have proposed a planar asym-
metrical hopper. In order to seek a periodic mo-
tion, we proposed an energy pumping mechanism
which uses a simple linear actuator and is active
only during flight. We derived a discrete dynam-
ical system using the Poincaré map and further
constructed the linear and non-linear approximate

models using Taylor series approximation. From
the simulated results, it is easy to conclude that
the non-linear approximated model is better ap-
proximation to the actual model. Also, the explicit
non-linear approximated model is in discrete time,
that helped to formulate DSMC control system.

We investigated the stability with classical and
DSMC based feedback strategies using simple con-
trol algorithms. It is shown that DSMC utiliz-
ing the nonlinear approximated model performs
better over classical and DSMC which use only
linear dynamical model. Saturation type reaching
law avoid chattering as observed in Gao’s reaching
law case. In terms of speed of convergence, control
effort required, DSMC based feedback strategy
performed well. The major conclusion from this
study is the possibility of stabilizing the actual
non-linear model with the help of a simple feed-
back controller. Further research effort in DSMC
system design is directed towards observer or out-
put feedback based design.
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